ONLINE VIRTUAL TEAM COLLABORATION PLATFORM WITH 3D GRAPHICS

-RESCUE-

FINAL DESIGN REPORT

INCREDIBLES

Salih Ahi
Kamil Nematli
Mustafa Onder

Abdulkadir Yazici

Initial Design Report

1. INTRODUCTION .ocoeciiiuciesnssisnssmsmssnsssssssesssssssssssssssssssssssnsassnssensssens 3
1.1. Lo Yot Q0 T o g '] TS 3
1.1.1. PUFPOSE.....ceeeeieieiee ettt e et e e e e e e s s b e bae et teeeeeeee e s e aas e eaaaae bbb eeeaeeaeeeeaa s nnntbnteeaeeaeeeens 3
1.1.2. Yoo T o 1 I TP PO P PP PPPPPPRRRRRRRPINY 3
1.1.3. (0] ¢ 1Yot {117 USSR 3
1.2. CONSTIAINTS ..uueiiiiiiiiiiiiiiriii e e e s s e e s e as s e s s s s s e s s s s s b e et sanbaesessansaesessssaesssssssaesssssnansas 4
1.3. R o=T 4 T o PP PRURPRS 4
2. IMIODULESoeiiiitiimssmssssnssssssssssssssssssssssnsssssesmsssssssansss sassssssssmssas sesses sesmssssesasssssssnsssassunsnssenssssssnnsnss 5
21 NEtWOTK MOQUIE ...ttt e s sb e s sas e s s sb s e be e s sanessssnsesneans 5
2.1.1 Message Handling and MeSSage TYPES ...ceeeriiiiiriiiiiiisssnnntteniiessieissessssssnsessnssasasass 6
2.1.1.2. Messages From ClIeNt TO SEIVETuueeeiiiiiiiiiiiiiiiiininnnseniieieieisnesssssssssssssssssssssssssssssssesssssssssssssssssnssasssass 9
2.2 LT UL T I 4T o N 10
23 Graphics MOTUIE.....cciiiienereriititieicicnsenerereeeieteesiesssssssssessseseessssessssnnstesseasesssssssssssnsnssassasssssssssssssnnnsanans 10
2.4 Y= T 1Y, o e 1] - TP 11
2.5 LI T =N 11
2.6 PRYSICS MOAUIEcceereiiiiiiiiiiienereeeiiis s ssnsssssessseses s s sasassasasssssssssssssssssnansessssssssssssssnnsnsassasssssssssssesnnn 11
3 USER INTERFACE.......cooisimnmessassnssnssmsssasssssenssssesssssssssassnes 12
3.1 L0 1Ty 1V 1= T N 12
3.2 TV =T g 1V =TT RS 13
4 CLASS DEFINITIONScuiiiiiemnmssmsmssssnsmssasanss 14
4.1 L L A o OO 14
4.2 LT 10T TN 16
4.3 Lo N 16
4.4 GRAPICS . iiiiiiiiiieireeeie s se e e et e s e e e e s e e e s as s s s sssssssssessessanseeseseensannsssssssssssssssssssseesaesaneeesasnannnsnssssnnns 17
4.5 INPUL ittt rrreeessirreeas e ttrtressssrrsasssssssrenssssssernassssssssassssssssensesssssesnssssssssansssssssesnsssssssssnnsssssssannesses 17
4.6 ENBINE ceeeeieieieeiciisiiiieiieeseeteeeeeseneennasnassssssssssssssssessaesaenessessassasnssssssssssssssssssssssssenerssssnsnannsnssssssssssasssssnnans
L R T 41T PSP PR PPPPPN
4.6.2 Trigger......
4.6.3 BaseSquad
B.6.8 POlICESUUA . .ii ittt ettt ettt ettt et e et e st sa bt e bt e st e e et e e shbe e e b be e sabeeeab et e bt e e shbeenbbeeeabeesareeennnne 19

Initial Design Report

4.6.5 BombermanSquad....

LN I ST =Y T4 o =Y Yo [V Lo U URUR SRR
L T A @ 1o 4o o TP PUPU R RRSTPTPPPPRE
L R T O 4 ol =T OO TP U PSP OPRUPPRRPPRPTRS
N I o1 [ol =T @ 4 ol =T OO OO PPTRUPPRRPTRTRE
4.6.10 (270 001 o114 0 -1 s OO OO PRR PRSPPIt
4.6.11 LT =4 oY =] USRS
4.6.12 CustomObiject... .
4.6.13 L1010 s PO OO PSSP PP PO PPPPPPPPPRRNN
4.6.14 BaSECNAIACTEN ..ei ittt ettt b e s s te e e bt e e st e e sa b e e e abe e sbee e bbeenabeenate
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.22
4.6.23 FirefighterLeader .
4.6.24 CIVITIAN ettt s bt et e st e e abe e s be e e she e e e b e e e b b e e e be e e ehb e e s be e e b be e nteeeaeeesabeeas
4.6.25 LY Lol o] S PO PP PPOPPPPPPTPPRE
4.7 L S
By e R - 14 T T Vo 1= OO OO TSP OO PP PPTRUPPRRPPPTRE
4.7.2 Behaviours Decider .. .
Loy T a1 o] A =1 o ¥ =41 [TP UPP R RROTRPPPPPPRE
5 STATE TRANSITION DIAGRAM. ... cmrsss s ssmssms s smssmsssmssmssss srmsssssns srmssmssss snnesns 29
6 SYSTEM ANALYSIS .t rcrmss s ssmssmssssssmssssssmssassss srmssassss smssnssssssmssnssssssassns senssnssss snssns 30
6.1 Data FIOW Diagram....cccccicieiisissisnnnentiiieisiissssssssnsnsensisssssssssssssssssesssssssssssssssssassesssssssssssssssssnsassessssssssssssnns 30

6.1.1 DFD Level-0
6.1.2 DFD Level-1
6.1.3 DFD Level-2

6.1.3.1 YT V=] g 0 e T - T RPUPPPPPPTIPRt 31
(7% B 0 B ol 11-1 | A oo] ¢ - TR TSRO U PP POTP 32
6.2 Use Case Diagrams

6.2.1 Client: Menu State Use Case
6.2.2 Server: Menu State Use Case

6.2.3 Client In-Simulation State Use Case
6.2.4 Server: In-Simulation State Use Case

7 B 000 N 37
8 L 0 20 L 38
9 T 00 5 009 D L) 0 39

1.

Initial Design Report

Introduction

This report is written by Ceng490 students for an overview of design of the project Rescue. A detailed
explanation of the scenario description, data flows, class and state diagrams are given yet they are not
final and may be changed in the final design report.

1.1. Project Description

1.1.1. Purpose

The purpose of the project is:

e Tosimulate real world scenarios in a virtual environment.

e To train squad leaders each specialized on its own area and improve their skills in their
areas.

e Toimprove collaboration between different squad leaders.

1.1.2. Scope

The project will be developed for leaders of squads mentioned below:

e police squad

o fire squad

e bomb defuse squad
In addition, this simulation could be useful for anyone who wants to increase their team
collaboration skills.

1.1.3. Objectives

Project will have the following features:

. The scenarios are going to be designed in a realistic manner.

. There will be a facilitator who manages the simulation from the server and can intervene
anything in the scenario.

. Facilitator will be able to choose among several different scenarios.

. Users can communicate with facilitator and other users via the voice chat.

. Facilitator can observe everything in the simulation from different view angles.

. Users follow the scenario from the first person view.

. Users will have limited resources and tools. These resources will be both equipments and
people.

The squad leader’s subordinates are capable of accomplishing given tasks.

The program will run in two modes: passive and active mode. The features above will be same for
both modes, however there will be some differences:

3

Initial Design Report

Passive mode:

Users have restricted interaction with computer.
. Users manage their teams via the facilitator.

Active mode:

Users have active interaction with computer.

. Users manage their teams using user interfaces on their own computers and via the facilitator.

1.2. Constraints

There is not much constraint given by the company. Also there is not any restriction to project platform or
development environment. The constraints are:

. The project must have been finished by June 2008.

. The project must be done by 4 Metu-Ceng senior students.

. The project schedule must be synchronous with the course schedule.
. The trainee user interface must not be complex.

. Trainees’ view perspective must be first person view.

. Facilitator must not affect the flow of scenario.

1.3. Scenario

Prologue : The scenario takes place in a large public building (like a big shopping center as Armada) in
present time. In the building several minor bombs have exploded and as a result fire has started in some
areas. And it has been reported that several unexploded bombs may still exist.

Main goal : Take all of the civilians to a safe area before they get hurt and defuse all of the bombs.
Teams : Firefighters, police squad and bomb defuse squad
Tools & resources :

Firefighers : Water is used as both tool and resource. They have two sources of water one of which is
infinite and the other one is finite. Also they have a fire engine.

Police squad : A maul will be used as a tool for breaking the doors. Also a resource will be used for
taking out the civilians from the high levels of the building.

Bomb defuse squad : A trained dog will be used as a tool for finding the bombs. Also detonators will
be supplied as a resource for deactivating the bombs and exploding the doors.

Subgoals :

Firefighters: Their task is to prevent the fire to spread over the building. Also they must distinguish the
fire in specific areas so that police and bomb defuse squads will be able do their task on these areas.

Initial Design Report

Police squad : Their task is to find and take out the civilians from the scene. Also they must help bomb
defuse squad enter the rooms by breaking the doors with their maul.

Bomb defuse squad : Their task is to find and deactivate the bombs. Also they must help police squad
enter the rooms by blowing up the doors with their detonator.

Colloboration Analysis:
If a team does not exist;

Fire fighters : The fire will spread over the building. As the result police and bomb defuse squad wil not be
able to operate on areas which are under fire, also civilians will be hurt by the fire.

Police squad : Not all the civilians will be found and the found ones will be taken out of the scene in an
unorganized way. Also bomb defuse squad may have some problems on entering some rooms since no
doors will be broken by the police squad.

Bomb defuse squad : The bombs will not be defused and will damage the building and may damage the
civilians in the evidence area. Also the police squad will not be able to enter some rooms since no door
will be blowed up by the bomb defuse squad.

If a team isn’t collobrating with the others;

Firefighters : Police and bomb defuse squad wil not be able to operate on areas which are under fire. And
they may be trapped by the fire. Also civilians will be hurt by the fire.

Police squad : There will be time loss for bomb defuse squad for waiting the door to be broken. Also
firefighters may try to distinguish fires in unnecessary places.

Bomb defuse squad : Police squad or civilians under their control may be hurt by bomb defuse squad’s
detonator. There will be time loss for police squad for waiting the door to be exploded. Also firefighters
may try to distinguish fires in unnecessary places.

Scenario Specifications:

Bombs defuse squad is able to blow up any door with their detonators, but police squad is able to break
only thin doors. Since bomb defuse squad has a limited number of detonators, they are not enough for
blowing up all the doors. So they need police squad assistance for passing through the thin doors.
Likewise police squad needs bomb defuse squad assistance for passing through the though doors.

2. Modules

2.1 Network Module

The project will be a real time online multi-user simulation. Users will connect to the system via
network connection. This requires a good server/clients network architecture. There will be three clients
and a server connected to each other. It is simply as follows:

Initial Design Report

Server:
Facilitator

&

S

% Client 3:
Bomb defuse
Client 1: squad leader
Police squad Q
leader b
%“ Client 2:
Firefighter
chief

There will be continuous data flow from server to clients and clients to server. This data will be
sended and received as network packages. The network packages are converted into message objects.
There will be two types of messages: voice packages for voice communication and all other messages.
Every message object have tree main fields:

- message id: to determine the type of message,
- user id: to determine who send the message,
- message body: includes the message content.

Server is a user having extra privilages. He starts the session and waits for users to connect server
as a client with their user id. After all connections are estaplished system is ready for bidirectional
dataflow. Since the system have server-client architecture all the clients’ messages are collected in
server’s message pool. Server processes them one-by-one and sends its own packages to related targets
if necessary. Both clients and server have two main threads. First is for sending prepared messages to
targets and second is for receiving and processing incoming messages. The simulation will be ended by
the server.

2.1.1 Message Handling and Message Types

We are using DirectPlay in our project and its message packet class. As in other message
packets our messages composed of two main parts: head and body. We are planning to use xml
based messaging to handle messages easily. As an example a piece of xml based message body
is given below:

<?xml version="1.0" encoding="UTF-8"?>

<simulationinfos>
<name>rescue</name>
<creator>incredibles</creator>
<timeperturn>120</timeperturn>

6

Initial Design Report

<timeleft>97</timeleft>
<gametype>active</gametype>
<description>Rescue all civilians</description>
<maxplayers>3</maxplayers>
<state>INGAME</state>

</gameinfos>

It was taken from internet and it can be parsed with a xml parser easily. We roughly

designed message types that will be used in simulation and they are listed with their

explanations below:

2.1.1.1.

Messages From Server to Client

Server Information

This message contains personalized information about the server.

- Name: Server name.

- Time: Start time of simulation (‘year/month/day/hour/minute/second').

Welcome Message
This message contains the server welcome message.
- Welcometext: Welcome message.

Server Userlist

This message contains the list of all users currently connected to the server.
- User: The user's name.

- Class: Type of the user.

Scenario Information

This message provides information about a scenario.
- Name: Name of the scenario.

- Map: Short description about the map.

- Description: Description about the scenario.

A Player Connects To Server

This message indicates to all users that a new player has connected to the server.
- Name: Player’s name.

- Class: Type of the connected user

Player Disconnects From Server

This message tells users that a player has left the simulation.
- Name: Name of the player that left the simulation.

- Reason: Reason for leaving.

Chat Message

This message contains chat text. This text will be sent to every user in the scenario.
- From: Name of the user who wrote this message.

- Text: Chat text.

Initial Design Report

e Whisper Message

This message contains whisper text. Only the player to which the message is specifically
sent to will receive the message.

- From: Name of user who wrote this message.

- Text: Text.

e Start Game Indication
This message indicates the start of the simulation.
It does not contain any data.

e End Of Game
This message indicates the end of the simulation.
- Data: Statistical data about simulation.

e PauseGame
This message sends a pause signal to all clients to pause the simulation.
This message contains no data.

e ResumeGame
This message sends a resume signal to all clients to resume the simulation
This message contains no data.

e Create Object
This message gives the required values for creating a new object in the environment.

- id
- name
- type
- isVisible
- isPhysical
- position
- direction
- scale

e Destroy Object
This message informs that the given object is destroyed form the environment

- id: ID of the destroyed object

e Change Object Properties
This message indicates that an object’s properties have been changed
- id: ID of the object
- position : New position of the object
- direction : New direction of the object
- scale : New scale of the object

e Change Character State
This message indicates that the given character’s state have been changed
- id : ID of the character
- state: New state of the character

Initial Design Report

e Change Squad Item Count
This message indicates that a squad’s item count have been changed

- id:ID of the squad
- item:The squad’s item’s type
- count: The item’s new count

o Create Trigger
This message is invoked for informing for a new trigger

- id : ID of the trigger
- time : The trigger’s time interval
- action : The action will be happened when it triggers

o Dispose Trigger
This message is invoked for informing for a destroyed trigger

- id: ID of the trigger

2.1.1.2. Messages From Client To Server

e Player Name
This message contains the name of the user connecting to the server.
- Username: Name of the user.

e Chatting
This message contains chat text written by the user.
- Chattext: Chat text.

o Whispering
This message contains a whisper text and the user to whom this text is to be sent to.
- Text: Whisper text.

e Disconnecting From Server
This message indicates that the user is disconnecting from the simulation.
- Reason: Textindicating the reason for which the user is disconnecting from
simulation.

e Change Position
This message provides the user’s new position if he/she moves

- position : Last position of the user
- direction : Last direction of the user

e Change State
This message is sent for indication if the user changes his/her state

- state : New state of the user

Initial Design Report

e Give Order
This message is sent when a user gives his/her squad an order

- order: The given order’s type
- target: The given order’s target object

e Pause
This messages sends a pause signal to the server.
This message contains no data.

e Resume
This message sends a resume signal to the server.
This message contains no data.

2.2 Sound module

Voice chat is essential part of simulation. Users will be able to communicate with other user
including facilitator via voice chat. When user wants to talk with someone he presses the button
and then microphone start to record the speech. Actually recorded data agglomerates in the
buffer, and when buffer becomes full data will be encoded into package before being sent to
server. Data packages, received by server, are transferred to appropriate user. When client gets
message it decodes the package and speaker will play the speech. There will also be two main
threads running one for recording speech and second for decode and playing the received data
packages.

2.3 Graphics Module

Graphics has always been one of the most important aspect of a program for the end-user.
Since computer users usually don’t have a detailed knowledge (and they don’t need to actually)
about the infrastructure and the architecture of a program, a well designed project may be
thought as a useless one because of its hardly managable and complex user interface. Especially in
a simulation program, making the user feel as if he is in the simulated environment is a hard task
to achieve without decreasing the usability. The more the reality is achieved, the more successful
and credible the results of the simulation are. Considering those facts, we try to present an
environment with satisfying details level to the user. But this requirement should not overcome
the usability of the system since the users are predicted to be trainees which are not so
professional in managing complex GUIs.

Such goals bring the requirement of a well design of the graphics module. The general
methodology is to define the module as seperate as possible from the main program to make
debugging and testing easier. Thus we designed a module, which consists of a single class,
SceneManager. Our approach is basically as follows:

e Load all objects to the scene at the beginning of the simulation.

10

Initial Design Report

e Asthe simulation commences, if there is a change in the object’s properties which
will affect how it will be rendered, that change is reported to SceneManager.
e SceneManager receives the changes, recalculates, and draws to the screen.

Our GUI will consist of irrLicht’s own GUI elements. The library already has any elements we
can possibly need in the simulation, like textboxes, buttons, slidebars, comboboxes, etc. The
resulting events will be either processed inside the graphics module or sent to the main engine,
depending on the event.

For the environment, we thought .bsp maps are the best choice for us the reasons of which
will be explained below. Thanks to irrLicht’s nice map loading capabilities and bsp maps’
optimized design, well designed and realistic maps will not decrease the system performance too
much.

In terms of objects data, graphics module will be very similar to the main engine. To prevent
extra data traffic between modules, actual object data will be kept in the graphics engine.
irrLicht’s integrated physics functions like collision detector will help a lot in modifying object
positions. All we have to do is to tell the module to move an object, and look at the resulting data
for final position of the object. Whenever neccessary, engine will request an object’s data and
send it to appropriate modules.

2.4 Engine Module

The engine is the core of the simulation. It basically is the boss which manages all other
modules, establishes the connection and controls the dataflow between other parts of the
system. The engine also applies game logic rules, such as spreading of fire, exhaustion of
resources, etc. Starting and terminating the triggers is another task done by the engine module.
All map, character and environment object data is stored and their related properties are
transferred to related modules by the engine. The engine is composed of several classes.

2.5 Al Module

Al is the brain of a system. The better the Al of a program, the better it can simulate human
actions and present a more realistic system. In our project, since we are not advanced in aspects
of developing a complex Al, simple tasks like pathfinding and decision making will be done by this
module. For these two subtasks, two classes will be implemented as described in the following
sections. This module contains three classes which are PathFinder, BehaviourDecider and a
ScriptEngine powered by Python.

2.6 Physics Module

With just stunning graphics, fast network protocols and a genious Al, a simulation may be
complete but the objects will fall when placed in the air! This is just one task the physics module

11

Initial Design Report

should overcome. The system we are planning to develop will be able to calculate basic physical
properties of enviromental objects and characters.

Yet after seeing irrLicht’s capabilities on collision detection , idea of entegrating a complex
physics engine to the server independent from the other modules became more unnecessary. In
the beginnings an environment with fully interactive objects which affects each other objects
physically (like pushing each other) was being thought. But such an environment does not provide
any functionality to the current scenario (It can only increase reality of the environment which is
not the project's primary goal). Entegrating such a physics engine will make the development last
longer, will consume a noticeable CPU power of the facilitator's PC and will produce extra network
packages over the network. Currently client's simplified physics module is being planned to
applied to the server as well.

3 User Interface

The user interface, an mentioned above, is designed to be simple and useful for the trainees to
navigate easily. Two seperate menus are designed for client and server.

3.1 Client Menu

e From the main menu, user can connect to a server, adjust simulation settings or exit the
system.

¢ Inthe join menu, after typing the server’s IP address and specifying a name for the user, the
simulation begins.

e From the options menu, user can change graphics settings (e.g. resolution, texture details..),
control settings (e.g redefine movement keys, camera control keys,..), or adjust volume
settings.

12

Initial Design Report

Server IP:
Resolution: M
Name: Ant-Alias
Join
Back .
Accept/Cancel
Join
Options
Exit
e Forward
Turn left
Controls
Sound
Back Accept/Cancel
Speaker volume
Mic volume
Accept/Cancel
Client Menu

3.2 Server Menu

¢ Inthe main menu, facilitator can host a new session, adjust game settings or exit the

system.
e From the create menu, IP address will be shown for the clients to join and the facilitator will

choose whether the simulation will run on active or passive mode.
e From the options menu, user can change graphics settings (e.g. resolution, texture details..),
control settings (e.g redefine movement keys, camera control keys,..), or adjust volume

settings.

13

Initial Design Report

Your IP:
Resolution: w
Simulation Mode: w Ant-Alias
Create/Back "
AcceptiCancel
Create
Options
Exit
o
Controls
Sound
Back Accept/Cancel

Speaker volume
Mic volume
Accept/Cancel

Server Menu

4 Class Definitions

4.1 Network

Network module consists of three classes. Two classes for client and server network modules
which inherit the user class and one common Message class. Message types are to be defined in
detail in the final report. We will use XML for message bodies which will make handling messages
across the network.

14

Initial Design Report

| Lwer
Abstract Class

= Figlds
¥ UserID ¢ int
g# userIP: string
¥ userMame : string
[= Methods
& getUserID{) : int
4% getUserIP() : string
&% getUserMlame() : string

3

;,‘V User(int newlserID, string newuserIP, string name)

R R, B 3 N ;

1
' .
Server (% N
Sealed Class
+ Uzer
[= Fields

ﬁ'l connectedUsers : Lisk<User =
logFile : string
¥ message : Message
= Methods
ﬂV
L“U

addUser{User newlser) : baol
end3imulation) : bool
getiCurrentMessagel) | Message
getLogFiled) : string

getMessager) | Message

getlserLisk) ; Lisk<lJsarz=

loggeristring newLog) ; bool
pauseSimulation() : bool
processMessageMessage message) ; bool
sendMessagelMessage newlessage) bool
Server()

startSimulation() : bool

[Message
Clazs

=l Fields
ﬁ‘.’ messageBody : string
y messagell | messageTvpe
@ userID :ink
=l Methods
¥ getMessageBodyl) @ string
¥ getMessageTvpel) | messageType
@ getUserID() : ink

4% Message(messageType bvpe, int sender, string message)

4% koString() : string
= Mested Types

¥

messageType
Erurn

Action
Skart
End

-~

¥

Client
Sealed Class
+ User

= Fields

ﬁ'i message : Message

= Methods

Client()

conneckzServer(string serverIP) : bool
disconnectFromServer]) : vaid
getCurrentMessage() : Message
getMessaged) | Message
processiMessage{Message message) : bool
sendMessageiMessage newMessage) : bool
setllserID) : bool

setlserMame!) ; bool

.

*¥

15

Initial Design Report

4.2 Sound

This class is used for playing environment sound, menu music and any audio files throughout the
simulation.

[Audio
Class

¥

= Fields
¢ audioType :int
o fileMame : string
¢ FileType : string
¢ status : bool
= Methods
& Audiofint tyvpe, string filePath)
2% Forward() : boal
&% getdudioType() ©int
4% gefStatus() : bool
2% mutel) : boal
2% pausel) : bool
2" play): bool
2% rewind() : boal
2% setvolumel) : bool

4.3 \Voice

VoiceMessage is separated from normal Message class since it has a different structure.
Speaker and Microphone classes are used for encoding and decoding audio streams.

*

" ClientYoice
Class

= Methods
@ ClientYoice(Client connection)
&% GetVoiceStream(User withUser) @ boal
& initialize) : void
&% MuteMicrophone() : boal
&% MuteSpeaker() : bool
2% SetMicrophonetalumedint volvalue) @ bool
&7 SetSpeakertolumedint wolvalue) @ bool

16

Initial Design Report

¥

| ServerYoice
Class

= Methods
2% CloseServer() : bool
S initialize) : woid
2% Respond() : bool
@ Servervoice(Server connection)

4.4 Graphics

This module consists of a single SceneManager class. Objects are loaded into the class and
changes are reported in as they occur. Rendering details are handled inside the class.

¥

| SceneManager
Class

=I Fields
o device : IrrlichtDevice
¢ objects : List<CustomObjects =
=l Methods
W GetObjPosChangeddint ID, Yector newPos, float vRokation) ; woid
2" Initialize() © bool
2" LoadMapistring fileame) : woid
2" LoadObjects(List <CustomObjects > abjects) : waid
W MoveZameraiNewPosition newPos, MNewiector newec) ; void
& Rund) : woid
& SendObjPosChanged(int ID, Yector newPos, float vRotation) ; void
2" SetAnimationdint objID, CObjectState mode) : bool
&7 Terminate() : bool

4.5 Input

InputManager class handles keyboard and mouse events with its KeyboardHandler and
MouseHandler members. These handlers access Keyboard and Mouse classes which have event
polls and translate events to InputManager.

17

Initial Design Report

-
InputManager
Sealed Class

= Fields

l{iﬁ keyboardHandler : KevboardHandler
2 mouseHandler : MouseHandler

= Methods
& InputManager(Form Form)

.

4.6 Engine

4.6.1 Timer

’ -
KeyboardHandler @) MouseHandler [#
Sealed Class Sealed Class
[= Fields [= Fields
@# keyboard : Keyboard ¥ mouse : Mouse
[= Methods [= Methods
& ReadkeyboardInputd) : woid & ReadMouselnput() : void
7 \
] O
r - r
Kevhoard &) Mouse (&)
Sealed Class Sealed Class
= Fields [= Fields

isDisposed : bool
¢ keyboardDevice : Device
ﬁ) keyboardstate : KeyboardState
= Properties
5 State { get; @ Keyboardstate
= Methods
& Dispose() @ woid
#% Disposelbool disposing) © vaoid
& Keyboard(Form farm}

i Pall) @ waid

This class helps control game speed of the simulation.

| Static Class

: [=I Fields

2 currentFRS @int
o deltaTime : float

;‘n"." lastFPSiCalculationTime : Float

2 lastTickTime : float

o previousFPS ;

P DeltaTime | get; T Float

ink

o FPS {get; brint

[= Methods
@ Tick() ¢ woid
2% Timer()
Mested Types

I
|
I
|
|
|
I
: = Properties
|
I
|
|
I
I
1

i ——

N — —— —— — . — -

18

¥ buttorBuffer : bytel]
¢ isDisposed : bool
@ mouseDevice : Device
¢ mouseSkate | MouseState
[= Properties
25 MouseButtons { get; }: byte[]
ﬁ Mousek § get; Fink
oo Mousey § get; b it
ﬁ Mouse? § get; +ink
5 State { get; b MouseStake
[= Methods
i Dispose() : void
5% Disposelbool disposing] : void
@ MouseForm Form)

W Pollgy : woid

Initial Design Report

4.6.2 Trigger

This is the class for triggering events during the simulation.

]

| Trigger
Class

=I Fields
o timeLeft ; double
= Methods
% Tick{double time) : void
+ Mested Tyvpes

4.6.3 BaseSquad
This is the main squad class. All other squads inherit this class.

4.6.4 PoliceSquad

This is the police team class. It composes of many PoliceOfficer classes and controls them

according to the orders given by PoliceLeader

4.6.5 BombermanSquad

This is the bomb defuse team. It composes of many Bomberman classes and controls them
according to the orders given by BombermanlLeader

4.6.6 FirefighterSquad

This is the firefighter team. It composes of many Firefighter classes and controls them
according to the orders given by FirefighterLeader

19

Initial Design Report

| AbstractSouad
Abstract Class
=+ AbstractCharacter

e

BombermanSquad

Sealed Class

+ AbstractSquad

[= Methods

»|

& BombermanSguad(string name, int id, int squadSize, Wector position, Yector dir...
&y DefuseBomb{CustomObject bomb) @ bool
W ExplodeDoar{CustomCbiect door) : boal
& SearchRoom{R.oom room) : bool

»|

PoliceSquad
Sealed Class
= AbstractSquad

= Methods
W PoliceSquad(string name, int id, int squadSize, Vector position, Yectar...
¥ UseMaul{CustomObject door) : bool
% UseRope(CustomObject window) @ boal

FireFighterSquad
Sealed Clasz
= AbstractSquad

[=l Methods

iy ExtinguishwithFireEngine{CustomObject karget) : bool
i ExtinguishwithGroundw ater{CustomObject target) : bool
% FireFighterSquad{string name, int id, int squadSize, Yector position, Vector direction, Yector scale)

»|

4.6.7 Options

This is the class that hold the settings about the simulation.

A ——— ——— —— —— =
|

Options
I Static Class

|
=

M e

n

LR

ields

camerafotationspeed ; double
gamesSpeed ; double
ishindowed : bool
mouseSensivicy : double
mousetvheelspeed @ double
screenHeight @ int
screentwidth ¢ int

o
=
=]
=)
1]
=
=
1]
L

i lplplpligigly

CameraRotationSpeed { get; + : double
aameSpeed { get; }: double
IsWindowed { get; } : boal
MouseSensivity { get; }: double
MousewheelSpeed { get; } : double
ScreenHeight { gek; b ink
Screenidch { get; + @ ink

=
i1
&L
o
]
o
un

v
v

Cptions)
SetDefault) ; woid

s —— —— ———— ——— — —— T — — —— —— ———— —— ——

20

Initial Design Report

4.6.8 Officer
This is the main NPC class. All other NPCs inherit this class.
4.6.9 PoliceOfficer
This is the NPC police class. These follow the orders given by the squad.
4.6.10 Bomberman
This is the bomb defuse NPC class. These follow the orders given by the squad.
4.6.11 Firefighter

This is the firefighter NPC class. These follow the orders given by the squad.

| AbstractOfficer ¥
Class
AbstractCharacter

i

FireFighter 2 Bomberman ES
Sealed Class Sealed Class
- AbstractOfficer - AbstractOfficer
=l Methods =l Methods
& Extinguish'WwithFireEngine(CustomObject target) @ boal & Bombermanistring name, int id, Yector position, Vector direction, Vector scale)
@ ExtinguishwithGroundwiater{CustomObject target) : bool ¢ DefuseBomb{CustomObject bomb) : bool
& FireFighter(string name, int id, Yector position, Yectar direction, Vector scale) v ExplodeloorCustomObject door) @ bool

W SearchRoom{F.oom room) ; boal

Policeman ES
Sealed Class
¥ AbstractOfficer

=l Methods
% Policemanistring name, int id, Yector position, Vector direction, Veckor scale)
4 UseMaul{CustomObject door) ; bool
& UseRope{CustormObject window) @ bool

4.6.12 CustomObject

This is the main object class. All other objects inherit this class.

4.6.13 [tem

This class is used for environment objects and items carried by players and NPCs like maul,
door, etc.

21

Initial Design Report

| Abstractharacter
Abstract Class
—+# CustornObject

n

Figlds
& health : double

<

<

4.6.14 BaseCharacter

This is the main character class. All other characters inherit this class.

| CustomObject =) |

* Mested Types

primaryState : States
& runSpeed @ double
3 secondaryState : States

;ﬂ walksSpeed : double

Properties

ﬁ“‘ Primarystate { get; } i States
ﬁ“‘ SecondaryState { get; b States

Methods

_) IDisposable

Clazs

=l Fields

o direction @ Vector

o idiink

#¥ isPhysical : bool

g¥ iswisible : bool

g# name : string

#¥ objectType : ObjectTypes
#¥ position : Vector
scale ¢ veckar

<

= Properties
ﬁ"“ Direction { get; set; } : Vector
ﬁ"“ Id { get; }:ink
ﬁ] IsPhysical { get; } : bool
ﬁ] IsVisible { get; }: boal
0 Name { get; } string
f Position { get; set; i Yector
'_‘T Scale { get; set; ¥ : Vector
'f‘j Type { get; } : ObjectTypes
= Methods
% CustomoObject{string name, int id, ObjectTypes objectType, Vecto...
% Dispose() : void

&) [Item
Class
-+ CustornObject

= Fields
@ count :ink
¢ itemType : IkemType
= Methods
% Itemistring name, int id, TtemType itemType, ObjectTypes objectType, int count, Yector
% Tremistring name, int id, ItemType itemType, ObjectTypes objectType, Vector position, Y
Mested Types

0

2% AbstractCharacter(string name, int id, Yector position, Yector direction, Vector scale)
& Run{¥ector destination) : bool
& Walk{vector destination) : bool

Mested Types

4.6.15 Map

This is the class holds other environment data. It is divided into sub regions.

4.6.16 Region

This is the class for a specific area of the map. Regions may be buildings, open areas, etc.

4.6.17 Building

22

Initial Design Report

This is the class for buildings in a region. It is divided into floors.

4.6.18 Floor

This is the class for a floor in a building. It is divided into rooms

4.6.19 Room

This is the class for rooms in a floor of a buildings.

23

Initial Design Report

Rectangie™apSe chion
Abstract Class

=I Fields
¢ leftUpCorner @ vector

o rightDownCorner @ \eckor

= Propetties

ﬁ“‘ LeftUpCarner { get; } i Yector

j} RightDownCaorner § get; + & Yector

= Methods

>

3% RectangleMapSection(¥ector leftUpCorner, Wector rightDownCorner)

[Room
Class
= RactangleMapSection

=I Fields

¥ characters : List<AbstractCharacter >

2% environmentObjects | List<CustamObject =
=| Properties

f,"‘ Characters { get; + : List<abstractCharacter =

o EnvironmentObjects { get; b1 List <CustomObject >
= Methods
AddCharacter{abstractCharacter characker) @ wvoid
AddEnvironmentObjeck{CustamObject obje) @ woid
RermoveCharacker(abstrackCharacker charackar) @ vaid
RemoveEnvironmentObject{CustomObject obje) : void
Room{vector leftUpCorner, Wector rightDownCorner)

<

o o4

| Region
Clazz
“#Raoom

=I Fields
buidings : List=Building >
=| Properties
2 Buildings { get; } : List<Building>
= Methods
9 Region({vector leftUpCorner, Yector rightDownCorner)

4.6.20 Leader

|

»|

fa¥

[.-Building

Class
=¥ RectanglaMapSection

=l Fields

¢ Floors @ List<Floor =
=l Properties

257 Floors 4 get; b1 List<Floor=
= Methods

& Building{¥ector leftUpCorner, Yector rightDownCornet)

¥

-
Map 2)
Sealed Class
+ RectangleMapSection
=I Fields

&# regions ! List<Region>
=| Properties
¥ Regions { get; } : List<Region>
= Methods
@ LoadMap(string fileMame) : bool
W Map{¥ector leftUpCorner, Wector rightDownCorner)

\, y,

[Floor
Class

¥ RectanglaMapSection

=l Fields

¢ Floorho :int

¢ rooms : Lisk<Roam=
=| Properties

5 Rooms { get; b : Lisk<Rooms
= Methods

% Floor{vector leftUpCorner, Yector rightDowniCorner, int Floorko)

|

This is the main player class. All leaders inherit this class.

4.6.21 PoliceLeader

24

Initial Design Report

This is the police player’s class. It has a squad member and can give orders through this squad
class to PoliceOfficers

4.6.22 BombermanlLeader

This is the bomb defuse player’s class. It has a squad member and can give oerders through
this squad class to Bombermans.

4.6.23 FirefighterLeader

This is the firefighter player’s class. It has a squad member and can give orders through this
squad class to Firefighters.

| Abstractt eader 9 |
Abstract Class
AbstractCharacter

f

BombermanLeader B3 PoliceLeader E3
Sealed Clasz Sealed Clasz

b Ahstractl eader = abstractl eader

= Methods =I Methods

& BombermanLeader{string name, int id, Yector position, Yector direction, Yector scale)
& OrderToDefuseBomb{CustamObiject bamb) : bool

& OrderToExplodeDoar{CustomObject door) : boal

& OrderToSearchRoom{R.oom roam) : bool

& OrderTollseMaul{ CustomObject door) & bool
& OrderTollseRopelCustomObject window) @ baol
% Policeleader(string name, int id, Yector position, Yectar direction, Yectar scale)

FireFighterLeader £
Sealed Class
b AbstractLeader

= Methods

& FireFighterLeader{string name, int id, Yectar pasition, Yector direction, Yector scale)
& OrderToExtinguishiithFireEngine{ CustamObject target) : boal
& OrderToE:xtinguishiithGroundwiater{CustomoObject target) : bool

4.6.24 Civilian

This class is used for civilians to be rescued in the building.

4.6.25 Vector

This is the main class for defining a position, direction and size on the map. It also has
methods to calculate mathematical operations.

25

Initial Design Report

v - B Methods

ector = & abs(): double

Struct absiVector 1) @ double
Anglefvector other) @ dauble

- Fields anglefvector w1, Yeckar v2) 1 double

CompareTolobject other) : int

CompareTo(Yector other) : ink

CrossProduck{¥ectar other) : Vector

CrossProduck{¥ector v1, Vector +2) ; Yector

Diskance{Wector okher) ; double

DiskancedWector w1, Yector v2) ; double

DotProduckdyector other) ; double

DotProducksyector w1, Yeckor v2) 1 double

Equals{object other) : bool

Equals{¥ector other) : bool

GetHashZoded) @ ink

Interpolatedyector other, double control) © Yector

Interpolatedyector other, double control, bool allowExtrapolation) : Yector
Interpolatelvectar w1, Vector w2, double contral) @ Yectar
Interpolate(vectar w1, Yector w2, double control, bool allowExtrapalation) @ Wect...
IsBackFace(Yectar lineCFSight) @ bool

IsBackFace(Yectar normal, Yector lineCFSight) @ bool
IsPerpendicular{vector other) @ bool

IsPerpendicular{vector +1, Yector +2) : bool

IsUnityector) : bool

¢ ARGUMENT_LENGTH ¢ string

¢ ARGUMENT_TYPE : string

¢ ARGUMENT _YALUE : string

Epsilon : Yector

EqualityTolerence : double

¢ INTERPOLATION_RAMGE : string

g MAGHITUDE : string

¢ MaxValue : Yeckor

¢ Minvalue : veckor

MEGATIVE_MAGNITUDE : string
MNOMN_YECTOR_COMPARISON & string
NORMALIZE_0 ' string
ORAGIN_YECTOR _MAGNITUDE : string
origin : Weckor

POSITIOMNAL _YECTOR © skring

I

1.
e

1% I LY
L S S

¢ THREE_COMPONENTS : string IsUnitveckor(yectar v13 ¢ bool
g UMIT_VECTOR : string Max{Weckor okher) @ Yeckar
'__‘,d w + double Maxvector v1, Veckor v2) 1 Yector
fic Yech MingYector okher) : Yector
¢ XAl : Yector Mingector w1, Yector w23 1 Yector
._-," y ¢ double MizedPraduct(vectar ather_v1, Yectar ather w21 double
¢ vhxis Weckor MizedPraduct(vectar +1, Yectar v2, Yectar v3) 1 double
4 7z double Mormalizel) : woid

L1}

J 2fis | Vector Mormalize{veckor w1} i Wector

= Properties

’_'“*f‘ Array 4 get; set; + 1 doublel]

’_'“*f‘ Magnitude 4 get; set; - : double
’_'“*f‘ thisfint indesx] 4 get; set; - : double
’_"*f‘ % { get; set; +: double

’_"*f‘ ¥ { get; set; +: double

ﬁ:' Z { get; set; +: double

Pitchidouble degree) : woid

Pitchi¥ector v1, double degree) : Yector
PowComponents{double power) : void
PowComponents{yector v1, double power) ; Yector
Roll{double degree) : woid

Rollivector v1, double degree) ; Yector
Sgrizomponents() : woid
SqriComponents{iector w1 Yeckor
SgrbComponents() : woid
SgrbComponents{vector w17} @ Yector
SumComponents{) : double
SumComponents{vector v1) : double
SurmiComponentSgrsl) « doubls
SuriComponentSarsivectar w1) ¢ doubls
TaString() ¢ string

TaString(string Farmat, IFormatProvider FormatProvider) @ string
ToWerbString) ¢ skring

Yector{double x, double v, double 2)
Yector{double[] xyvz)

Yector{Yector +1)

aw{double degree) : woid

Yawyector v1, double degree) ; Vector

LR SR S o S oF o o S o oF o OF S X o o o oF SF SF o S SF o o 4F o oF o oF oF oF S 4F SF oF oF JF S 4 4F 4 o 4F o oF o 4F o oF SF OF SF oF SF 4F S o S 4 S O S oF o ¢

26

Initial Design Report

Below is shown an inheritance map among the abstract classes in the Engine module.

| Abstracttharacter [¥
Abstract Class
b CustamObgject

Civilian @) | AbstractSquad [E3
Sealed Class Abstract Class
b abstractCharacter b abstractCharacter
= Ficlds = Fields

¢ scareRatio : double o items ; List=Tksm>
=l Properties o members ; List<AbstractOfficer >

0 ScareRatio { get; - : double ¥ squadType : SquadTypes
5 Methods = Properties

& Civilian(string name, int id, Vector position, Yector direction, Veckor scale) jj Ttems { get; + : List<Item:
= sguadType { get; } : SguadTypes

| Methods
7" AbstractSquad(string name, int id, SquadTypes squadType, int squadSize, Vect...

+ Mested Types
| AbstractOfficer @) | Abstract eader @]
Class Abstract Class
= AbstrackCharacter = AbetractCharacter
= Fields = Fields
¢ discipline : double ¢ leaderType : LeaderType
¢ officerType : OfficerTypes ## sguad : AbstractSguad
=l Properties = Properties
ﬁ] Discipline { get; } : double ﬁ LeaderTypel { get; } @ LeaderType
25 OfficerType { get; b OfficerTypes = Methads
=l Methods % mhstract eader(string name, int id, LeaderType leaderType, Vector position, ve
3% AbstractOfficer(string name, int id, OFficerTypes officerType, ¥ector positio... % CancelOrder() : void

* Mested Types + Mested Types

4.7 Al

4.7.1 Path Finder

Given the start and end points, this class makes the necessary calculations to find a
path between two poins on the map.

4.7.2 Behaviours Decider

Using a script engine and looking at the objects’ behavior, this class determines how
the object should act in the simulation

4.7.3 Script Engine

27

Initial Design Report

This class is used by the behavior decider.

[pathFinder
Class

=I Fields
¢ destination : Yeckor
@ map i Map
@ position : Vector

= Methods

& Moveldouble movementDistance) : bool

= Mested Types

AStar
Sealed Class

() IComparable

f AStarMode
Class

| BehaviourDecider
Clasz

=I Fields
J’ scriptEngine @ ScripkEngine
Methods
4 DecidedndPerformEehaviour() : void
2% DecideBehaviour(y : Behaviours
=l Mested Types

Behaviours ¥

Erurn

28

|

-

L.

|

ScriptEngine
Sealed Class

=I Fields

;f;‘ engine | PythonEngine

= Methods

4" InitializePythonEngined) : void
& Run3criptistring scriptMame) @ void

Initial Design Report

5 State Transition Diagram

In-Simulation .
Splash State State -+—— | Loading State
l Regimsa T 1Fau9e T-"-EEEUI
Cpening Join/Create
Cinematics FPause Slate Menu State

State

Cancel
Returm 1o Menu

JaHn

Title Menu State

l."fpllmsl TE;;:Ic

Options Menu
State

Al.r:lr.'.-l TE.-'lun_l.";lrr.cl

Lave Carcel

Graphics Contrmller

Save Carcal

Controlles
configuration
State

Audio Options

Graphics
Menu State

Meanu

State Transition Diagram

29

Initial Design Report

6 System Analysis

6.1 Data Flow Diagram

6.1.1 DFD Level-0

This diagram explains Data Flow Level-0 of the simulation. Facilitator and trainees sends
commands via mouse, keyboard and microphone. They receive graphical representations of the
simulation environment and listen to other users from their speaker.

Trainee
Facilitator data Trainee data
/——""'"'_—_'_"\-‘ — T
Facilitator -— - Trainee
Simulation data

Simulation data

T
%
\‘
)
Situagior dony Trainee

DFD: Level O

6.1.2 DFD Level-1

This diagram explains Data Flow Level-1 of the simulation. Client-to-server data packets include
information such as user’s outgoing voice and user commands. Server-to-client data packets
include information such as other users’ incoming voice, environment objects’ modified
properties.

30

Initial Design Report

Simyplation data

| — T —_ T
) . "-n.._‘___‘_‘_‘_:_-_._._'_'_._'_,.r'
Simulation data Trainee data

Simulation data

DFD: Level 1

6.1.3 DFD Level-2

These diagrams explain Data Flow Level-1 of the simulation.

6.1.3.1 Server Core

e Object’s visual data contains visible objects information.

e Graphics engine returns only exceptions to server core.

e Object’s dynamic data contains physical object information.

e Processed object’s dynamic data consists of physical object’s modified information.
e NPC orders consist of given to non-playing characters.

e NPC actions consist of non-playing characters’ reaction to given orders.

e User commands are commands generated by the user inputs.

31

Initial Design Report

Physics engine

Saerver-to-client data
.—-—--—-—-___*_

F...___________,_.—

ient-to-server data

Metwork
angine

Al

Keystroke
Keyboard
Input manager Sarver core
Mouse =
Mouse movement g
butten clicks 5 <
28
i
s oloe chat
ﬁ, -
;g.*"o angine
WO Sound
Microphone
Chat channel sounds Enviorenment
sound
Speaker
Speaker

6.1.3.2 Client Core

32

Object’s signal data contains visible objects information.

Graphics engine returns only exceptions to server core.

User’s dynamic data contains user’s character’s physical information.
Processed user’s dynamic data consists of physical object’s modified information
User commands are commands generated by the user inputs.

Outgoing netwaork

__packel

Incoming network
packet

Initial Design Report

Manitor

&, ‘_,
as!‘“?”'fads
Mage “eng

Keyboard Keystroke

Graphics
engine

Input manager

Mouse

Mouse movement
buttan clicks

Simplified
physics engine

Client core

Client-to-server data
—

e

\aice chat
angine

Enviorenment

User W:V-' w“at chanrel sounds

Microphone

6.2 Use Case Diagrams

Speaker

6.2.1 Client: Menu State Use Case

Sarver-to-client data

saunds

Metwark
anging

Sound

Cutgoing netwark

__packel

Incoming network
packet

Ninr&nmeﬂt sounds

Speaker

This is the main screen the client will face when starting the program. The screen has 3 buttons.
Join: Connect to the server at the given IP address.

Options: Set program options such as graphics, audio and controller configurations.

Exit: Terminates the program.

33

Initial Design Report

Options

Client: Menu state
6.2.2 Server: Menu State Use Case

This is the main screen the server will face when starting the program. The screen has 3 buttons.
Create: After clicking this button and choosing the simulation mode, the simulation will initialize.
The clients will then be able to connect the server by entering the server’s IP.

Options: Set program options such as graphics, audio and controller options.

Exit: Terminates the program.

Options

Server: Menu state

34

Initial Design Report

6.2.3 Client In-Simulation State Use Case

This diagram explains what the client can do while the simulation is running.

Return to Menu: Selecting this will switch the current state to the user menu state.

Pause: Selecting this will send a pause request to server and the simulation’s current state will be
switched to pause state.

Give Order: The client will be able to give commands such as: Move squad, use tools, use resources
and use vehicle. If the simulation is at “Passive Mode”, these commands shall be given to the
facilitator via voice chat and are executed by the facilitator. If the simulation is at “Active Mode”,
these commands can be given by either voice chat or user interface.

Move: Moves the user on the map using the keyboard and the mouse.

Voice chat: Users will be able to communicate with the facilitator and other users by voice chat.

Return to
menu

Move
squad

i

Give

<<include>>—
order

Use
resource

) @)

b

Client: In-simulation state

6.2.4 Server: In-Simulation State Use Case

This diagram explains what the server can do while the simulation is running.

Return to Menu: Selecting this will switch the current state to the server menu state.

Pause: The simulation’s current state will be switched to pause state.

Change View: By default, facilitator will begin at “Free View”, in which he can move in any
direction without any constraint. He also can view the scene directly from any client’s view at
“User View”. Another view mode is the “Map View”, in which the facilitator sees the clients as
little symbols on a full screen map.

35

Initial Design Report

Apply given orders: Facilitator can, at any time, execute orders such as: Move squad, use tools,

use resources and use vehicle. At “Passive Mode”, these orders may be executed only by the
facilitator.

Voice chat: Facilitator can communicate with the clients via voice chat.

Modify objects: Depending on the flow of the scenario, facilitator can create or dispose objects, or
modify attributes of an object.

Return to

Move squad
menu

=
SCOE

Change

view

Use
resource

Apply given

<<include>>—
orders

i

Create/
| Dispose
objects
Modify .
objects <<include>>—

Server: In-simulation state

6.2.5 Server and Client: Pause State Use Case

This diagram explains available actions for the server and the user when the simulation is paused.
Resume: Selecting this will switch simulation’s current to in-simulation state.
Voice chat: During the Pause State, users will be able to voice chat.

36

Initial Design Report

Server and Client: Pause state

7 Tools

First of all, project's main platform is decided to be Microsoft .NET. Then all of the team
members chose C# as their MS .NET language. This wasn't an easy choose though because in the last
10-15 years 3D computer graphics software (games, simulators, 3D modelers ...) developments have
been dominated by C++. And most of the related libraries, APIs and engines have been built and
optimized for C++. But on the other side, C++ has become an inefficient programming language
compared to fresh languages like Java and Python.

To come to .NET and CH#, .NET has a large collection of common libraries, which allows
developers to avoid reinventing the machine. C# supports most popular programming language
paradigms, also has a large community support on the internet by Microsoft's official and some
unofficial sites and forums .Also it's the MS Visual Studio's best integrated language, which speeds
up coding, makes debugging and team collaboration easier.

Some people claim that C# isn't suitable for professional real-time 3D graphics programming
(like games) for its performance issues. But some other people assume that it will be good enough
by making code optimizations in the remaining times since it significantly speeds developing. Also
Microsoft sees XNA as future's game development environment and chose C# as the standard
language for XNA. (Although XNA is currently used for indie gaming, its creation goal is making game
programming easier, for both amateur and professional game developers. its professional edition is
planned to be released in the future by the Microsoft (Currently it has only express edition).)

There were free game engines like NeoAxis and Blade 3D which integrated graphics, physics,
network and so on. But they were still in beta stages, unstable and slow even in their own samples,
lacking documentation and samples. So we decided using/making sub-engines/modules for the
project.

There are huge amounts of graphics engines, both amateur and professional, free and
commercial. We focused on semi-professional and free ones and eliminated them to three ones,
which are OGRE, Irrlicht and Crystal Space. All were popular and matured products. They have a nice
community support, well documented manuals, easy to understand tutorials and samples. OGRE

37

Initial Design Report

had come into prominence by being used by some professional game projects and Irrlicht had come
into prominence by supporting official .NET API. Since Irrlicht's graphics features were enough for
the project, it has been chosen as project's graphics engine mostly by its official .NET API support.
OGRE and Crystal Space have .NET wrappers but they are not official and seemed a bit amateurish
compared to their original C++ APIs and Irrlicht's .NET API.

After searching for networking, we came up with three options for networking, using Managed
DirectPlay, .NET's networking libraries or XNA 2.0's network library. .NET's networking libraries were
good in general but were not suitable for the project; they were not designed for real-time
applications. Managed DirectPlay and XNA.Framework.Net were just designed for real-time 3D
graphics applications, and they were both high-level libraries. But Managed DirectPlay is deprecated
and XNA 2.0 is very new API (released in December 2007). They both have a nice community
support but Managed DirectX 9.0c has obviously more samples and books over XNA 2.0, which
made it to be chosen for the project's network API. Also we looked for some C++ network libraries
like RakNet and HawkNL, but we skipped them for their integration issues and for a fully managed
coded project.

For graphics modeling, there are two products which actually dominate the market; 3DSMax
and Maya. Although both are excellent modeling tools, 3DSMax’s wide variety of exporting tools
which made it easier for us to integrate the models in our graphics module was a plus for it. Also
considering that we had some previous experience with it, 3DSMax was our choice for object
modeling.

8 SoFar...

As predicted, we managed to integrate foretold libraries successfully and presented a prototype
demo. Also began designing maps and models, some of which we used in the prototype. Especially our
network and graphics modules are running smoothly. We need to implement the engine to establish a
good communication between the modules. Also Al and scripting modules are to be integrated.

38

O |TaskName Duration Start Finish |F Oct 07 [Nov 07 [Dec'07 [Jan"08 [Feb 08 [Mar 08 [Apr 08 [May 08 [Jun08 |
17[24]01[08]15]22[28]05[12[19[26]03[10[17 [24]31[07 [14]21[28 0411 [18]25 03 [10[17[24 3107 [14]21 [28]05[12[19]26]02[09[16]23]

1 | Scenario Design 15 days| Mon 15.10.07| Fri02.11.07 O " "

2 |F Concept Research 15 days?| Mon 15.10.07) Fri02.11.07 I

3 |E] Requirement Analysiz Rep| 15 days?| Tue 16.10.07) Sun 04.11.07

4 | Server Core Design 30 day=?| Mon 03.12.07 Fri11.01.08 iSalih

5 m Client Core Dezign 30 days?| Mon 03.12.07) Fri11.01.08 ;Salih

[m Graphics De=ign 45 day=?| Sun 041107 Fri04.01.08

T Metwork Design 46 day=?| Sun 04.11.07 Fri04.01.08 |kadir

i Al Design 45 days?| Sun 04.11.07 Fri04.01.08

9 m Physice Design 45 days?| Sun 04.11.07) Fri04.01.08

10 |4 Graphics Demo 15 days?| Mon 24.12.07) Fri11.01.08

AT | Network Demo 15 days?| Mon 241207 Fri11.01.08 pdulkadir

12 | Phyzics Demo 15 days?| Mon 241207 Fri11.01.08

13 m Al Demo 15 day=?| Mon 241207 Fri11.01.08

14 R Audio Demo 15 day=? Mon 241207 Fri11.01.08

15 | Map Design 55 days| Mon 17.12.07| Fri28.02.08 O Mustafa

16 [Fd Models Design 65 days? Mon 03.12.07 Fri29.02.08 e ——— 111}

17 m Uszer Interface Design 25 days?| Mon 10.12.07 Fri11.01.08

12 |[F] Initial De=ign Report 1day? Fri30.11.07 Fri3011.07

19 | Integration Demos 11 days?| Mon 19.11.07| Mon 03.12.07

20 B Final De=ign Report 1day? Fri11.01.08 Fri11.01.08 @ 1M

21 m Prototype Implementation 10 days| Mon 311207 Fri11.01.08 [—

22 _H_ Prototype Demo Odays Fri18.01.08 Fri18.01.08 # 180

23 | Graphics Implementation | 55 days?| Mon 21.01.08 Fri04.04.08 ey salih

24 | Client Core Implementation | 60 days?| Mon 21.01.08| Fri11.04.08 | Mustafa;Salih

25 |4 Server Core Implementatio| 60 days| Mon 21.01.08 Fri11.04.08 | Mustafa;Salih

% | Input Manager Implementat| 10 days?| Mon 21.01.08| Fri01.02.08 l Abdulkadir

27 | User Interface Implemental] 15 days? Mon 17.03.08 Fri04.04.08 I Salih

28 | Allmplementation 45 day=?| Mon 04.02.08 Fri04.04.08 | Mustafa
..n 28 | Physics Implementation 17 dayz| Mon 03.03.08 Tue 25.03.08 [_.W_.._m-.mqm
m. o @ [Server Network Implement| 80 days| Mon 21.01.08) Fri11.04.08 ey Abdulkadir;Kamil
1) m 3 | Client Network Implementa:| 60 days?| Mon 21.01.08 Fri11.04.08 | Abdulkadir;Kamil
~ e} 2 | Voice Chat Implementation | 30 days? Mon 03.03.08 Fri11.04.08 I Kamil
mo m 33 m Alpha Testing 21 days?| Mon 31.03.08 Mon 28.04.08 I
8 Q | Beta Testing 27 days? Tue 29.04.03 Wed 04.08.03 : —
a v 35 | Quality Azsurance 14 days Tue13.05.08 Fri30.05.08 | —|
..ﬂ..Ua ¥* |FH Documentation 15 days?| Mon 12.05.08 Fri30.05.08 [—]
m N ETAET | Final Product Presentation | 10 days?| Mon 19.05.08 Fri30.05.08 —
— ® |E Final Product Release 6days?| Fri23.05.08| Fri30.05.08 ¥ 30.05

39

